Elementary maths for GMT

Calculus

Part 4: Complex numbers

Complex numbers

- Equations like $x^{2}=-1$ do not have a solution within the real numbers
- There are many applications where it would be useful if there was a solution (or at least something to do math with...)
- This requires extending the 'normal' set of real numbers to the so-called complex numbers
- Complex numbers are useful in many areas
- Including differential equations, algebra, many physics topics, electricity, gas and liquid flows
- Many of these are of importance in modeling virtual worlds
- Quaternions (further extensions of complex numbers) are useful in efficient 3D modeling of rotations of objects

Complex numbers

- Allow you to work with roots of negative numbers
- Give a relationship between the math of exponents and trigonometric math
- colloquially: link e and π

Complex numbers

- Are created by introducing one new abstract number: $\sqrt{-1}$
- A complex number is represented by two real numbers, x and y, and can be notated as the coordinate pair (x, y) or the expression $x+i y$ where i is defined by $i^{2}=-1$

Graphical representation

- All complex numbers (x, y) together span the complex plane
- Real numbers $(y=0)$ are on the real axis
- Purely imaginary numbers $(x=0)$ are on the imaginary axis

Complex calculus

- Rules are similar to the calculus on real numbers. Just remember that $i^{2}=-1$
- Example
- Let assume $z=x+i y$ and $w=u+i v$:
- Addition

$$
\begin{aligned}
z+w & =(x+i y)+(u+i v)=x+u+i y+i v \\
& =(x+u)+i(y+v)
\end{aligned}
$$

- Multiplication

$$
\begin{aligned}
z w= & (x+i y)(u+i v)=x u+x i v+i y u+i^{2} y v \\
& =(x u-y v)+i(x v+y u)
\end{aligned}
$$

Modulus and conjugate

- $z=(x, y)=x+i y$
- The modulus or absolute value is defined by

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

- The conjugate is defined by

$$
\bar{z}=x-i y
$$

Conjugate

- The conjugate is important to 'switch' between complex and real numbers. Multiplying a complex number by its conjugate gives a real number (no i)

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-x i y+i y x-i^{2} y^{2}=x^{2}+y^{2}
$$

- Example
- convert a complex fraction to a $x+i y$ form

$$
\frac{1+2 i}{1+i}=\frac{1+2 i}{1+i} \cdot \frac{1-i}{1-i}=\frac{1-i+2 i-2 i^{2}}{1^{2}+1^{2}}=\frac{3+i}{2}=\frac{3}{2}+\frac{1}{2} i
$$

Polar form

- A complex number $z=x+i y$ can also be expressed using its modulus $|z|$ and the angle φ with the positive x-axis

Polar form

- Because

$$
\left\{\begin{array}{l}
x=|z| \cos (\varphi) \\
y=|z| \sin (\varphi)
\end{array}\right.
$$

we can write

$z=x+i y=|z|(\cos (\varphi)+i \sin (\varphi))$
If φ is specified so that $-\pi<\varphi \leq \pi$, then φ is called the argument of z, denoted by $\arg (z)$

Example

- Write $z=1+i$ in polar form
$-x=1$ and $y=1$
$-|z|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
- the argument can be computed from (e.g.):

$$
\cos (\varphi)=\frac{x}{|z|}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad \text { so } \varphi=\frac{\pi}{4}
$$

- the polar form is

$$
|z|(\cos (\varphi)+i \sin (\varphi))=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)
$$

Euler's formula

- $\cos (\varphi)+i \sin (\varphi)=e^{i \varphi}$ (without proof)
- So the polar form can be abbreviated to:

$$
\begin{aligned}
z & =|z|(\cos (\varphi)+i \sin (\varphi)) \\
& =|z| e^{i \varphi}
\end{aligned}
$$

Exponential polar form

Examples

- $z=|z|(\cos (\varphi)+i \sin (\varphi))=|z| e^{i \varphi}$
- $3+i \sqrt{3}=2 \sqrt{3}\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right)=2 \sqrt{3} e^{i \frac{\pi}{6}}$
- $-1=-1+0 \cdot i=1(\cos (\pi)+i \sin (\pi))=e^{i \pi}$

$$
-1=e^{i \pi}
$$

A relation between $e, 1, i$ and $\pi!!!$ How cool is that!

De Moivre's formula

- By multiplying complex numbers in their polar form we find

$$
\begin{aligned}
& \left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \\
& \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
\end{aligned}
$$

- This generalizes to, with $z=|z|(\cos (\varphi)+i \sin (\varphi))$

$$
z^{n}=|z|^{n}(\cos (n \varphi)+i \sin (n \varphi))
$$

- For unit modulus, this gives de Moivre's formula $(\cos (\varphi)+i \sin (\varphi))^{n}=\cos (n \varphi)+i \sin (n \varphi)$

Example

- For $n=2$
$\underline{(\cos (\varphi)+i \sin (\varphi))^{2}}=\underline{\cos (2 \varphi)+i \sin (2 \varphi)}$
$(\cos (\varphi)+i \sin (\varphi))^{2}=$
$\cos ^{2}(\varphi)+2 i \cos (\varphi) \sin (\varphi)+i^{2} \sin ^{2}(\varphi)=$
$\cos ^{2}(\varphi)-\sin ^{2}(\varphi)+2 i \cos (\varphi) \sin (\varphi)$

Taking the real $\quad 2 \cos (\varphi) \sin (\varphi)=\sin (2 \varphi)$ and imaginary parts $\left\{\cos ^{2}(\varphi)-\sin ^{2}(\varphi)=\cos (2 \varphi)\right.$
$>$ Very real results using complex algebra

